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LETTER TO THE EDITOR 

Cumulant renormalisation group and its application to the 
incipient infinite cluster in percolation 

Daniel C Hong and H Eugene Stanley 
Center for Polymer Studies-; and Department of Physics, Boston University, Boston, MA 
02215, USA 

Received 11 July 1983 

Abstract. We introduce the cumulant method into the context of position-space renor- 
malisation group. The advantage of this method over previous procedures is that one 
need not systematically evaluate all 2N states of each Kadanoff cell, where N is the number 
of elements (sites or bonds) in the cell. We illustrate this method by calculating, for bond 
percolation with an eight-bond cell, the critical exponents characterising the following 
quantities: ( i )  the mean number of backbone bonds, ( i i )  the mean number of bonds in the 
minimum and maximum paths along the backbone, (iii) the mean number of singly 
connected (‘red’) bonds, and (iv) the mean number of bonds in all the self-avoiding walks 
connecting the two extreme points. We also derive previously obtained results for the 
conductivity and resistivity. 

Position-space renormalisation group (PSRG), in all its various forms and variations, 
has been the object of much investigation since its inception a decade ago (see e.g. 
Burkhardt and van Leeuwen 1982). One reason for the success of PSRG is that it has 
served an important complementary role to conventional momentum-space RG work, 
which generally is most successful at, above, and somewhat below the upper marginal 
dimensionality d,. For d well below d,, however, the basic assumption that ‘weight 
functions’ are roughly Gaussian breaks down (Bruce 1981, Binder 1981) and it is 
here that the predictions of PSRG are often more reliable. 

In the general area of connectivity phenomena (such as percolation, linear polymers 
and branched polymers), PSRG has played a particularly important role (see e.g. Stanley 
et af (1982) and references therein). Among the reasons for this is the fact that, at 
least until recently, there were no exact results for critical properties even for d = 2 
(with the exception of the exact values for the percolation threshold p c  for a few 
lattices with special properties). 

One advantage of PSRG approaches to connectivity phenomena is their directness : 
no Hamiltonian is, in general, necessary. Hence the approach is quite physical provided 
one chooses a reasonable renormalisation transformation that adequately reflects the 
connectivity of the problem under study. On the other hand, a serious disadvantage 
of PSRG approaches is that the calculations are generally quite complicated since one 
must in general enumerate all 2N configurations of an N-element Kadanoff cell (where, 
e.g., the elements are bonds that can be intact or broken). Thus only the smallest 
cells can be treated exactly, and the predictions of small cells are often not too accurate. 
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The ‘trend’ for increasing cell size is, however, very regular and therefore extrapola- 
tions based on results from a sequence of ever-increasing cell sizes can be quite reliable 
(Reynolds et a1 1980). Thus any method that can reduce the total number of diagrams 
that must be calculated is of potential utility. 

The basic assumption underlying PSRG is ‘self-similarity’: the essential physics of 
the system is not influenced by a scale change. For example, if some percolation 
quantity Q ( p )  diverges at p c  with exponent x, 

Q ( P ) - ~ P  -pCIx, ( l a )  
then under the RG transformation, the new quantity Q ‘ ( p ’ )  also diverges with the 
same exponent, 

where p ’  = R ( p )  is the renormalised probability after a renormalisation transformation. 
If the effect of the scale change on Q ( p )  is Q‘=AQQ,  then ( l a )  and (16) imply 

where A, =dR(p)/dpl,=,*, where p *  is the fixed point of the RG transformation. For 
example, if Q ( p )  is the correlation length ( ( p ) ,  then AQ = 1/6. Thus the exponent of 
any quantity Q ( p )  can be calculated if we can calculate the recursion relation in the 
vicinity of the fixed point. It is to this task that we now turn our attention. 

We illustrate the essential idea of cumulant renormalisation group (CRG) by means 
of an example: a 2 x 2  bond cell on the square lattice (figure l (a)) .  This cell is 
renormalised into a single bond. If we are interested in properties of the backbone, 
then we imagine that the extreme east bonds are connected by a bus bar, and similarly 
for the extreme west bonds. Then the 2 x 2 cell is equivalent to a Wheatstone bridge 
(figure l(6)). 

x 3 x  X 

J I roJ Ibl 

( a )  

Figure 1. (a )  An eight-bond Kadanoff cell of Reynolds et a/  (1977) for bond percolation 
on a square lattice with length rescaling parameter b = 2. ( b )  The corresponding five-bond 
Wheatstone bridge obtained when one places bus bars on the east and west extremities 
of part ( a ) .  

The question to be addressed is ‘what is the recursion relation p ’ =  R ( p )  giving 
the probability of the renormalised bond to be intact, where p is the probability of 
the original bonds to be intact?’ Generally, for any quantity Q we have (Stanley et 
a1 1982) 

(Q) = E Q (con fig) p (con fig), 
2’ configurations 

(3) 

where Q(config) is the value of the quantity in one of the 2’ configurations of the 
bond cell, and p(config) = p b ( l  - p ) 8 - b  is the probability of the given configuration of 
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b intact bonds. As an example, we have for the number of intact 'backbone' bonds 
(Shlifer et al 1979) 

~ ~ 1 ( ~ ) = 5 p ~ + p ~ q ( 5 X 4 ) + p ~ q ~ ( 3 ~ 2 + 2 ~ 6 ) + p ~ q ~ ( 2 ~ 2 ) + p q ~ ( 5  x0)+q5(0) .  (4) 

In writing (4), we have systematically evaluated the 25 configurations of the backbone 
bonds; the dangling ends are not considered. 

The same results can be obtained by using the cumulant method, according to 
which for any graph G and any quantity Q, the average Qij between points i and j 
of figure 1(b)  is given by 

where the summation runs over all subgraphs, which are constructed by SAW paths, 
of the original graph G, E(g)  is the embedding constant, b (g) is the number of bonds 
in g, and the cumulant C ( g )  satisfies the recursive relation 

Here V ( g )  is the value of g, while g' are the subgraphs of g. 
If we apply this method to the Wheatstone bridge of figure 1(b) ,  

(&" = C ( 4 3 P 5  + 4 c  (+%I4 +c(<:>)P4+2C(+P3 +2C( <: >p2 

= ( v ( + ) - 4 v ( + ) -  V ( < : > ) + 2 V ( f ) + 4 V (  < ))U5 
+ 4 [ v ( + ) -  V ( f ) -  V( <: )Ip4 

+ [ v ( < : > ) - 2 v (  <: ) ]p4+2V(f )p3+2V(  <: ) P 2 .  

R(p)=2p2+2p3-5p4+2p5.  (80 ) 

(7) 

To test the CRG, we first calculate the probability that sites f' and j are connected. 
From (7), we readily find 

This agrees with the recursion relation calculated by Reynolds er a1 (1977). Also 
we can calculate the mean resistance between sites i and j ,  where each bond is taken 
to have resistance unity. We find 

3 49 4 22 5 XR=4p2+6P - r p  + T P  , 

which agrees with Bernasconi (1978). 
Similarly we can calculate the mean number of backbone bonds. Actually there 

are two physically plausible definitions of the backbone bonds between points i and 
j .  In definition 1, we follow Shlifer er a1 (1979) and define a bond to be part of the 
backbone if it belongs to the intersection of the set of all self-avoiding walks between 
points i and j .  In definition 2, we follow customary intuition and define a bond to 
belong to the backbone if it carries current when a potential difference is applied 
between points i and j .  Thus, e.g., the central bond of the Wheatstone bridge of 
figure l (b)  is considered a backbone bond by definition 1, but not by definition 2. 
For the mean number of backbone bonds, we find the new result 

x B B 1  =4p2+6p3-4p4-p5,  X B B ~  = 4p2 + 6p3 - 4p4 - 2p '. (8~, d )  

If we set q = 1 - p  in (4), we recover ( 8 c ) .  
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We find for the mean number of bonds in the minimum and maximum paths along 

@e, f )  
The structure of the incipient infinite cluster has been proposed to consist of a 

backbone and numerous dangling ends; the structure of the former is a sequence of 
singly connected 'red' bonds interrupted by multiply connected 'blue' bonds (Stanley 
1977, Coniglio 1981, 1982). If we calculate the mean number of 'red' bonds, we find 

(8g) 

the backbone, respectively, 

xmax = 3p5 - lop4 + 6p3 + 4p2. ~ , , , , = 4 p * + 6 p ~ - 1 4 ~ ~ + 6 p  5 , 

Xred = 4p2 f 6p - 2op4 + lop '. 
Notice that Xred = p(dR/dp) so that the Coniglio (1982) theorem holds for the Wheat- 
stone bridge. If we calculate the mean number of bonds in all the self-avoiding walks 
connecting the two extreme points of figure l(c), we find 

( 8 h )  

Since the eight-bond cell of figure l ( a )  is self-dual, p *  = i, which is the exact value 
for bond percolation on a square lattice. Hence A, = s from (8a). The renormalised 
cell has only one bond (figure l(a)), so the renormalised values for all the above 
quantities are simply p *  at p = p * .  Therefore A. for each quantity is obtained by 
dividing the values of the functions of equations (8) by p * .  Thus we find A R = ~ ,  

The corresponding critical exponents are given by substituting these values into (2). 
Thus for the behaviour of the effective one-dimensional resistance LR - E -lR we have 

2 3  X M S A W = ~ P  +6p -12p4+gp5. 

13 

47 23 17 39 13 73  A B B ~ = G ,  hBB2=8, A m i n = H ,  A m a x = G  and Ared=B and A M S A W = T Z .  

[ R =  1.34, (9a 1 
where E = (pc-p)/pc. Similarly for the two different definitions of the backbone, we 
find LBBl- E - ' ~ ~ I  and LBB2 - E - ' R B ~ ,  where 

[BBl=2.219, [BB2= 2.175. (96 1 
For the mean number of bonds in the minimum and maximum length paths between 
sites i and j ,  we define Lmin - and L,,, - E and find 

cmin = 1.55 ,  Cmax = 1.835. (9c 1 
Since Ared =A,, it follows that 

[red = 1, (9d 1 
where [red is defined through Lred-~-'rCd, and Lred is the mean number of singly 
connected bonds between i and j .  This is in accord with the Coniglio theorem that 
[red = 1 for all d. Finally, for the mean number of bonds in all the self-avoiding walks 
between i and j ,  we define LMSAW - CbMSAw, and find 

[MSAW = 1.699. (9e 1 
These results are compared with independent calculations by other methods in table 
1,  and the degree of agreement is surprising considering the simplicity of the present 
approach and the relatively small size of the Kadanoff cell used. 

In summary, then, we have introduced the cumulant method into PSRG and found 
that it substantially reduces the labour necessary for the explicit calculations required. 
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Table 1. Comparison between exponents calculated by cumulant renormalisation group 
for the 2 x 2 bond cell of figure l ( a )  and predictions for the same exponents obtained by 
other methods. 

Cumulant 
renormalisation 

Exponent group Other methods 

l R  1.34 1.43a, l . lb,  1.28' 
~ B B I  2.22 2.4d 
t B B 2  2.18 not calculated before 
l m i n  1.55 1.4d, 1.49' 
t lnax 1.835 not calculated before 

&SAW 1.699 not calculated before 

a Fisch and Harris (1978). 

1 .ooo 1.od.e.f 
l r e d  

Hong and Stanley (1983). 
Stinchbombe and Watson (1976), Harris and 

Derrida and Vannimenus (1982). 

e Pike and Stanley (1981). 
Kirkpartick (1977). Coniglio (1982). 

We plan to apply this method to the 3 x 3 Kadanoff cell, for which the corresponding 
generalisation of the five-bond Wheatstone bridge has 13 bonds. This is by itself a 
non-trivial task, and results will be reported in a future work. 

We wish to thank A Coniglio and S Redner for helpful discussions. 
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